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A fragmented habitat becomes increasingly fragmented for species at higher

trophic levels, such as parasitoids. To persist, these species are expected to

possess life-history traits, such as high dispersal, that facilitate their ability

to use resources that become scarce in fragmented landscapes. If a special-

ized parasitoid disperses widely to take advantage of a sparse host, then

the parasitoid population should have lower genetic structure than the

host. We investigated the temporal and spatial genetic structure of a hyper-

parasitoid (fourth trophic level) in a fragmented landscape over 50 � 70 km,

using microsatellite markers, and compared it with the known structures of

its host parasitoid, and the butterfly host which lives as a classic metapopu-

lation. We found that population genetic structure decreases with increasing

trophic level. The hyperparasitoid has fewer genetic clusters (K ¼ 4), than

its host parasitoid (K ¼ 15), which in turn is less structured than the host

butterfly (K ¼ 27). The genetic structure of the hyperparasitoid also shows

temporal variation, with genetic differentiation increasing due to reduction

of the population size, which reduces the effective population size. Overall,

our study confirms the idea that specialized species must be dispersive to

use a fragmented host resource, but that this adaptation has limits.
1. Introduction
High trophic-level species, such as predators and parasitoids experience more

fragmented habitat than do their prey or host species. This is because with increas-

ing trophic level, the resource pool becomes sparse and locally unstable [1–3].

Parasitoids live at the third and fourth trophic levels and are an important part

of virtually all insect communities [4]. Most parasitoid species have a narrow

host range, and relatively specific resource requirements [5], thus we expect

them to be sensitive to landscape structure, and vulnerable to decline due to habi-

tat fragmentation. However, parasitoids can persist in many landscapes if they

have a broad resource niche, or greater dispersal ability than their hosts [6–8].

The consequences of landscape structure for a population should be

reflected in its spatial genetic diversity and structure [9]. The degree of genetic

differentiation of a host and a parasitoid in a shared landscape has been com-

pared in few cases. Some of these studies have reported the parasitoids having

higher genetic differentiation [10–13], whereas other studies have found lower

(e.g. [14]), or simply different geographical patterns of genetic differentiation

[15]. Host specialization and fluctuating dynamics of the host populations are

also known to influence the genetic structure of parasitoids [16–18].

We present an analysis of the large-scale spatial and temporal genetic structure

of a hyperparasitoid wasp, which to our knowledge is the first such study of an

insect at the fourth trophic level. We compare the genetic structure of this wasp

with that of the species it depends on, at trophic levels below it (host parasitoid

and host butterfly). We test the hypothesis that in a shared fragmented landscape,

specialized species at higher trophic levels have weaker spatial genetic structure
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than their hosts, because they must move at a larger scale to find

resources that are sparsely distributed. We also studied the tem-

poral changes in hyperparasitoid structure over three years, and

its qualitative association with changes in host population size.

The species, in this study, live in the Åland islands of Southwest

Finland where the host butterfly, Melitaea cinxia has a classical

metapopulation in a fragmented landscape [19].

(a) Research system
The Glanville fritillary butterfly, M. cinxia, (Lepidoptera:

Nymphalidae) and the community of parasitoids associated

with it in Åland, have been the centre of intensive ecological

research for the last 20 years [20–22]. In Åland, there are about

4 000 small habitat patches over an area of 50–70 km. The habitat

patches are clustered in the landscape, which we delineate by

using the software package SPOMSIM [23], as semi-independent

patch networks (later referred to as SINs), which are separated

from each other by an unsuitable habitat, and differ in size and

connectivity. The butterfly distribution is fragmented. During

the period of the study, the average number of local butterfly

populations was 510, with a low of 363 and a high of 771.

On average, 35% of local populations become extinct and 35%

are newly colonized each year [19]. Generally, from 1 to 10 but-

terfly egg clutches (100–200 eggs in each clutch) can be found in

a local population (meadow). The caterpillars live in family

groups, feeding gregariously in the summer, and spending

winter diapause in a shared silken nest [24].

The wasp Hyposoter horticola (Hymenoptera: Ichneumoni-

dae) is a solitary egg-larval endoparasitoid. It is a specialist,

using only the host M. cinxia [25]. The adult is extremely

mobile and parasitizes a third of the host caterpillars throughout

the landscape every year, resulting in a population size that is a

fixed fraction of the host population size [21]. Mesochorus cf.

stigmaticus (Hymenoptera: Ichneumonidae) [26] is a solitary

hyperparasitoid wasp that lays eggs into larval parasitoids

within M. cinxia caterpillars. It is specific to parasitoids of only

M. cinxia, and uses almost exclusively H. horticola as a host in

Åland [24], where it is found in most local host populations [27].
2. Material and methods
(a) Sampling
Three caterpillars were collected from each M. cinxia nest found

during the systematic annual survey [22]. Thus, the sampling

effort is uniform over the entire landscape each year (electronic

supplementary material, figure S1). After overwintering as

larvae in the laboratory and reaching adulthood, the wasps were

stored in 96% ethanol at 2208C until further use. We used

female hyperparasitoids reared from caterpillars collected over

four years (2008–2011). The number ranged from 22 to 175 indi-

viduals per year, depending on host butterfly population size,

the rate of parasitism, and rearing conditions. For comparison,

we calculated the population structure of the parasitoid H. horticola
using 407 samples (for details, see [28]) and the host butterfly

M. cinxia using samples (n ¼ 421) collected across Åland in 2010.

(b) Genotyping
For the hyperparasitoid, DNA was extracted from abdominal tissue

of females using a DNeasy isolation kit (Qiagen), and genotyped

using species-specific microsatellite loci [29]. The fluorescent dyes

FAM, HEX, and TAMRA (DNA Technology A/S) were used to

label the forward primers. The tested loci were arranged in multi-

plex panels based on non-overlapping size ranges for each dye.
The PCR reactions were performed in a total reaction volume

of 10 ml which consisted of 1� Qiagen Multiplex PCR solution, Q

solution, 0.2 mM of each primer, distilled H2O (dH2O), and

10–20 ng of template DNA. The PCR conditions used for amplifica-

tion were as follows: 958C for 15 min, followed by 30 cycles of 958C
for 30 s, 55–608C for 1.5 min, and 728C for 1 min with a final step at

608C for 10 min. The diluted PCR products were electrophoresed on

an ABI 3730 automated sequencer (Applied Biosystems) and the

sizes were determined using Genescan-500 ROX size standard

(Applied Biosystems). The genotypes were scored manually using

Gene Mapper version 5 (Applied Biosystems).

For the host butterfly, larval tissue was homogenized prior to

extraction using TissueLyser (Qiagen) at 30 s21 for 1.5 min with

Tungsten Carbide Beads, 3 mm (Qiagen). DNA was extracted

using the NucleoSpin 96 Tissue Core Kit (Macherey-Nagel). Where

DNA yield was low, extracted DNA underwent two rounds of

whole genome amplification (WGA) (LGC Genomics). Genotyping

was performed using a panel of 40 SNP markers on the Kompetitive

Allele Specific PCR (KASP) system (LGC Genomics). Single nucleo-

tide polymorphisms (SNPs) markers were selected from putatively

neutral regions of the genome [30]. Full marker information and

details of SNP calling and validation are given in [31] and in the

electronic supplementary material, table S1.

(c) Data analyses
For the hyperparasitoid, the locus-specific inbreeding coefficient

(FIS, [32]) and deviations from the Hardy–Weinberg equilibrium

(HWE) for the microsatellite loci were tested using the software

GENEPOP, (v. 4.2; [33]) for all the samples at the level of SINs.

The indices of genetic diversity (HE) and allelic richness (Ar, rare-

faction method) per locus and per SIN were estimated using

program FSTAT v. 2.9.3 [34]. The same program was used to esti-

mate the neutral genetic differentiation (FST) among and between

populations/SINs, respectively. The standard error of the FST

was calculated by jackknifing over loci.

Genetic structuring between populations was visualized for

the hyperparasitoid using a Bayesian clustering analysis [35,36],

using the spatial clustering of individuals model implemented in

the program BAPS [37]. We also used analysis of molecular var-

iance (AMOVA) to partition the genetic variation between and

among SINs using the program ARLEQUIN [38]. Similar spatial clus-

tering of individuals from different SINs distributed across Åland

was also undertaken for (i) the host parasitoid, using 14 microsatel-

lites markers [39] and (ii) the host butterfly, using 40 neutral SNP

markers developed for the butterfly [31].

The effective population size (Ne) of the hyperparasitoid was

estimated for each year using the sibship method implemented

in COLONY2 [40]. The program was run with no prior information

on candidate parents and sibship sizes, under the full-likelihood

model for a haplodiploid system assuming a monogamous

mating of females and a polygamous mating of males. This pro-

gram was also used to identify the full siblings among the

individuals. We calculated the geographical distances between sib-

lings in different patches, in order to assess the dispersal range of

the mother during egg laying, using the geographical coordinates

of each habitat patch [22]. Isolation by distance (IBD) was tested by

correlating the degree of pairwise differentiation between SINs

(parametrized by FST) and geographical distances between them

using the program ISOLDE as implemented in GENEPOP

(v. 4.2; [33]). IBD analysis was calculated for each year separately,

as well as for data from all the years combined.
3. Results
(a) Genetic diversity of the hyperparasitoid
All 25 microsatellite loci genotyped for the analyses were poly-

morphic and did not deviate from HWE across different SINs.



Table 1. Genetic diversity of the hyperparasitoid each year. HO is observed heterozygosity, He is expected heterozygosity, Ar is allelic richness, FST is fixation
index, and FIS is the inbreeding coefficient.

year SIN ID Ho He Ar FST FIS

2008 – 2009 SIN13 0.412 0.47 3.059

SIN17 0.45 0.453 3.102

SIN21 0.386 0.482 3.296 0.015+ 0.007 0.167+ 0.046

SIN51 0.396 0.471 2.92

SIN67 0.393 0.507 3.078

2009 – 2010 SIN2 0.4 0.422 2.27

SIN13 0.446 0.484 2.47

SIN16 0.405 0.429 2.32

SIN17 0.4 0.418 2.33

SIN18 0.375 0.434 2.35 0.074+ 0.007 0.104+ 0.048

SIN21 0.449 0.471 2.5

SIN37 0.362 0.418 2.25

SIN44 0.407 0.451 2.38

SIN51 0.292 0.364 2.17

SIN61 0.381 0.367 2.05

SIN67 0.368 0.453 2.45

2010 – 2011 SIN37 0.283 0.397 2.04 0.121+ 0.043 0.231+ 0.071

SIN67 0.395 0.505 2.27

2011 – 2012 SIN21 0.429 0.499 2.68 0.057+ 0.013 0.162+ 0.051

SIN51 0.446 0.436 2.53

SIN67 0.345 0.451 2.53
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The overall expected heterozygosity (He) and Ar were low

across different SINs/populations and ranged from 0.364 to

0.507 and 2.04 to 3.29, respectively, across different years

(table 1). Ar and He did not differ between SINs within each

year (electronic supplementary material, figure S2 and table

S2) or between years (Ar: ANOVA: F3,96 ¼ 0.253, p ¼ 0.859;

He: ANOVA: F3,96¼ 0.083, p ¼ 0.969; electronic supplementary

material, figure S3). Thus, the overall genetic diversity was

consistent over the landscape, and there was no observed

difference in genetic diversity between years.
(b) Genetic structure of the hyperparasitoid and
comparison with the host and butterfly

The degree of genetic differentiation of the hyperparasitoid

was generally low, but differed between years. The pairwise

FST between SINs showed a different degree of differentiation

but the overall population differentiation between SINs was

low for each year (FST ¼ 0.015–0.121, table 1). There were

signs of inbreeding, with an FIS of 0.10–0.23 between years

(table 1). The AMOVA showed that the genetic variation was

partitioned mostly within SINs (87.21–97.95%), but there

was also significant variation between SINs (2.04–12.78%;

table 2). The degree of genetic differentiation between SINs dif-

fered between years; with 2008–2009 (FST ¼ 0.01) showing less

differentiation than 2009–2010 (FST ¼ 0.074), 2010–2011

(FST ¼ 0.12), and 2011–2012 (FST ¼ 0.057). Additionally, the

pairwise FST between samples for the years 2008–2009
and 2011–2012 was significantly higher than that between

samples for the years 2008–2009 and 2009–2010 (table 3).

The effective population size (Ne ¼ 133–718) of the hyperpar-

asitoid also differed considerably among years (figure 1b,

electronic supplementary material, table S3). Finally, the

number of genetic clusters, based on the Bayesian spatial

mixture clustering of the individuals, also varied among

years (electronic supplementary material, figure S4). It was

lowest in 2008–2009 (K ¼ 2, posterior probability ¼ 0.99) and

then increased subsequently in years 2009–2010 (K ¼ 4,

posterior probability ¼ 0.99) and then 2011–2012 (K ¼ 12,

posterior probability ¼ 0.73). In similar analyses of just

one year, the host butterfly had the most genetic clusters

(2010–2011, K ¼ 27, figure 2a), the host parasitoid had an

intermediate number (2009–2010, K ¼ 15, figure 2b), and the

hyperparasitoid had just 4 (2009–2010, K ¼ 4, figure 2c).

We did not find IBD for the hyperparasitoid in the

years 2008–2009 and 2009–2010 (2008–2009: r2 ¼ 0.015, p ¼
0.73; 2009–2010: r2 ¼ 0.06, p ¼ 0.08). The analysis for

IBD for the other two years could not be performed because

there were too few samples from each SIN. An analysis of the

combined data for all the years also shows no effect of IBD

(r2 ¼ 0.048, p ¼ 0.07; electronic supplementary material,

figure S5). There were 55 sibling groups in the dataset, with

the remaining 244 individuals having no siblings in the

sample. Most of the siblings were located within the same

host butterfly habitat patch. Among those found in different

patches, the longest distance between siblings was 2 000 m

(figure 3).



Table 2. Results of AMOVA for SIN grouping of the hyperparasitoid each year.

year source of variation sum of squares variance components percentage variation

2008 – 2009 (average over 24 loci) among populations 39.06 0.126 2.05

within populations 913.49 6.021 97.95

total 952.55 6.147

2009 – 2010 (average over 25 loci) among populations 170.91 0.469 7.82

within populations 1601.35 5.534 92.18

total 1772.26 6.003

2010 – 2011 (average over 21 loci) among populations 8.73 0.696 12.79

within populations 43.02 4.749 87.21

total 51.75 5.445

2011 – 2012 (average over 24 loci) among populations 20.76 0.407 7.95

within populations 199.96 4.719 92.05

total 220.72 5.126

Table 3. Pairwise FST for the hyperparasitoid samples between different years. The number above the diagonal indicates the p-value. (The ‘0’ in different rows form
the diagonal.)

2008 – 2009 2009 – 2010 2010 – 2011 2011 – 2012

2008 – 2009 0 0.0008 0.295 0.0008

2009 – 2010 0.0026 0 0.289 0.0005

2010 – 2011 0.0026 20.0013 0 0.0295

2011 – 2012 0.0073 0.0079 0.0082 0
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Figure 1. (a) The population size of the host butterfly, Melitaea cinxia (dashed line, right-hand axis) measured as number of larval nests in the autumn, the fraction
of hosts parasitized by Hyposoter horticola (black line, left axis) adjusted for differential laboratory mortality, and the fraction of H. horticola hyperparasitized by
Mesochorus cf. stigmaticus (grey line, left axis) 2008 – 2011 (b) The effective population size (Ne) of the hyperparasitoid for different years (also the see electronic
supplementary material, table S3).
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4. Discussion
(a) Genetic differentiation of the hyperparasitoid

population and effective population size over time
Overall, the pattern of genetic structure of the hyperparasitoid

indicates that it disperses widely in the landscape and the

population is genetically well mixed. This corresponds to its

known distribution, as it is present throughout the island,

even in small and relatively isolated localities, in spite of

strong local extinction–colonization dynamics of the host but-

terfly [20]. The degree of structure of the hyperparasitoid is

similar to what has been found in some previous studies of
primary parasitoid wasps on a regional scale using several

different types of molecular markers [41], but is clearly less

structured than other systems, such as Eurytoma robusta, a para-

sitoid of the gall fly Urophora cardui [10] and the aphid

parasitoid Lysiphlebus hirticornis which is differentiated even

at the level of host aphid colony on a single plant [42]. We

expect that the pattern we found should be common for hyper-

parasitoids that have a narrow host range. Those that are

facultative or have a wide host range may have greater spatial

structure, because individuals would not necessarily have to

move on a large scale to find hosts.

The extent of genetic differentiation and effective popu-

lation size can vary due to processes, such as migration or



Mesochorus cf. stigmaticus, K = 4

Hyposoter horticola, K = 15Melitaea cinxia, K = 27

(a) (b)

(c)

Figure 2. Comparative genetic structures of the three trophic levels in Åland. (a) The host butterfly Melitaea cinxia, (b) the parasitoid Hyposoter horticola year
2009 – 2010 (adapted from [28]), and (c) the hyperparasitoid Mesochorus cf. stigmaticus year 2009 – 2010 (this study).
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Figure 3. Distribution in the landscape of the offspring of the parasitoid Hyposoter horticola (black) (data from [28]) and the hyperparasitoid Mesochorus cf.
stigmaticus (grey) indicated by the proportion of sibling pairs presented as (a) a hierarchy of localities and (b) distance apart in metres (distance between siblings
from the same habitat patch was not measured).
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large changes in population size [43,44]. A decline of

population size and local founder events can create spatio-

temporal genetic differentiation in a population [45]. For

example, Nyabuga et al. [18] found temporal differences in

genetic differentiation of the aphid parasitoid L. hirticornis
due to local extinction and colonization events and high

inbreeding. We found an increase in the overall genetic differ-

entiation over years. This goes along with the observed

decrease in overall population size of the hyperparasitoid.

The decrease in the population size is both in conjunction

with decreasing host population size (year 2010–2011), and

independent of host population size (years 2009–2010 and

2011–2012). Specifically, the fraction of parasitoids that was

hyperparasitized decreased significantly from year 2008–

2009 to 2009–2010, and from 2010–2011 to 2011–2012,
despite the increase in the density of host butterfly between

these years (figure 1a), indicating a significant reduction in

population size of the hyperparasitoid. This further explains

the drastic reduction of effective population size over time

(figure 1b; electronic supplementary material, table S3). The

spatial analysis shows that the spatial genetic structure of

the hyperparasitoid was low in year 2008–2009 (K ¼ 2) and

increased in year 2009–2010 (K ¼ 4, figure 2c). Again, after

the significant population crash in year 2010–2011 the

observed number of spatial genetic clusters increased con-

siderably in the subsequent year 2011–2012 (K ¼ 12).

However, the majority of the individuals in the year 2011–

2012 belong to a single genetic cluster (52%), which is

widespread over the island (electronic supplementary

material, figure S5c). The other genetic clusters comprised
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only a small fraction of individuals (3–9%), many of them

made up of siblings (K ¼ 6). These sibling groups, presum-

ably caused by few females reproducing in isolated host

nests, result in a higher number of genetic clusters. In sum,

reduction in population density and effective population

size have probably led to the increased genetic differentiation

and genetic structure between populations/SINs in the years

following 2008–2009.

It is not known why the hyperparasitoid population size,

and more drastically the effective population size, declined

despite the average abundance of the host butterfly and the

parasitoid host. One explanation is that when the host popu-

lation was small, the wasp inbred, producing diploid males

(A Nair 2015, personal observation). Diploid males are the

result of mating between relatives in haplodiploid species

with complimentary sex determination [46]. They are

known to impose a genetic load because they are either unvi-

able or sterile [47], which can lead to a severe population

crash [48]. An alternative explanation is infectious disease,

such as microsporidia [49]. The microsporidian Nosema has

been detected in the parasitoids and in the host butterfly in

Åland (A Duplouy 2015, personal observation), though the

prevalence and fitness costs, if any, have not been measured.

(b) Spatial population structure of the hyperparasitoid
in comparison to the trophic levels below it

The host butterfly, host parasitoid, and hyperparasitoid inter-

act strongly in a shared landscape in Åland. As predicted, if

species at higher trophic levels must move increasingly more

to find unstable resources [1], their degree of population

structure decreases with increasing trophic level. The host

butterfly population is strongly structured at the level of the

habitat patches and at the level of SINs owing to habitat frag-

mentation and dispersal limitations [19,27], resulting in high

genetic differentiation (FST ¼ 0.1; [50]), a strong pattern of

spatial genetic structuring, and high geographically segre-

gated Bayesian genetic clustering (K ¼ 27, figure 2a). The

structure we found for the butterfly is qualitatively the

same as found for samples collected in 2002, using four

microsatellite markers and 10 neutral SNPs [51] suggesting

that the butterfly has had a relatively stable degree of popu-

lation structure over time. The primary parasitoid, occupying

the next trophic level, also shows a spatial genetic structure at

the level of SINs, but the genetic differentiation is weak

(FST ¼ 0.07, [28]), with fewer spatially defined genetic clusters

(K ¼ 15) than the host butterfly. Using data from the same

year as were used for the parasitoid (2009–2010), the hyper-

parasitoid had just K ¼ 4 genetic clusters and little spatial

pattern in the observed genetic structure.

In order for the spatial genetic structure to decrease with

increasing trophic level, the higher trophic-level species must

be mobile. This is not always the case, which is illustrated by

another parasitoid in the research system, Cotesia melitaearum
(Hymenoptera: Braconidae), at the same trophic level as

H. horticola. This wasp is localized and dispersal limited,

undergoing local extinctions at a higher frequency than

the host butterfly populations [27,52]. Consequently, a pre-

vious study showed that it has high spatial genetic

differentiation (FST ¼ 0.378, [11]) in Åland. Thus, in this

community, the host butterfly M. cinxia and primary parasi-

toid C. melitaearum show a metapopulation structure [19,53],

wherein the lack of gene flow between spatially isolated
populations primarily shapes their genetic structure. However,

the metapopulation model does not fit the primary parasitoid

H. horticola (third trophic level) [28] and the hyperparasitoid M.
cf. stigmaticus (fourth trophic level), as both these species are

highly dispersive moving at a scale larger than local host but-

terfly populations. This movement results in a weak spatial

genetic structure. The contrast between species is further sup-

ported by lack of IBD in the hyperparasitoid (electronic

supplementary material, figure S5), strong IBD in the parasi-

toid C. melitaearum [11], and comparatively weaker IBD in

the parasitoid H. horticola [28].

The species in this study occupy an island archipelago, so

they are isolated from immigration. Additionally, there is

strong yearly (generation) fluctuation and spatial variation of

population sizes owing to the environmental variation and the

host metapopulation dynamics [19,54]. This scenario can lead

to loss of genetic variability, especially when the population

size is small [55,56]. Indeed, the effects of population isolation

and inbreeding are well documented in the host butterfly

[57,58]. The parasitoid H. horticola [28] and hyperparasitoid

also show signs of a general lack of variation and inbreeding.

(c) Individual movement and landscape-scale genetic
structure

Although the spatial genetic structure of the hyperparasitoid

indicates that it is highly mobile, sibling analysis showed that

individual females tend to forage locally for hosts, laying eggs

within a single habitat patch and not moving between habitat

patches (figure 3). Therefore, the females must be dispersing

before reproducing. This is possible because they are adults

for several weeks before hosts are available for oviposition

[20], and given the high rate of turnover of local host popu-

lations, many must move in order to find any hosts. The

parasitoid H. horticola females behave very differently, distribut-

ing their progeny widely in the landscape (figure 3) [28].

Differences in competition may explain the strong difference

between the foraging strategies of the parasitoid and the hyper-

parasitoid. The adult female parasitoid experiences both

interspecific competition [59] and very strong intraspecific com-

petition for hosts [21,60], which leads to the behaviour of

monitoring of potential host patches by multiple individuals

over weeks [61]. This may drive them to disperse widely

during egg laying. Study of the foraging strategies of parasi-

toids has shown that in the presence of high competition,

females can leave a habitat patch to explore and forage in

other patches in the presence of conspecifics [62,63]. By contrast,

the hyperparasitoid has no direct interspecific competitors and

apparently no or low intraspecific competition [64].

(d) Conclusion
We found that the genetic population structure of a specialist

hyperparasitoid is low, suggesting that instead of tracking the

local population dynamics of the host, which might lead to a

fine-scale population genetic structure (e.g. [14]) it avoids

local host dynamics by being mobile. This makes sense if the

host is locally unstable, so that a parasitoid cannot stay in one

place for multiple generations. By comparing the genetic struc-

ture of the hyperparasitoid with that of its host parasitoid and

the host butterfly upon which it depends, we found a pattern

of decreasing spatial structure that corresponds to an increasing

need to move to find resources in a fragmented landscape.
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The host butterfly population sizes fluctuate locally

because the butterfly lives as a metapopulation. Hence, the

local availability of the host parasitoid also fluctuates. The

hyperparasitoid is generally able to accommodate for that

by dispersing. However, there are also global (the whole

Åland islands) fluctuations in the butterfly population size pri-

marily owing to weather. Large fluctuations are occurring

increasingly frequently [54] and affect the overall resource

availability to the wasp. Over the four years of the study, the

hyperparasitoid population size decreased, both independent

of the host population (years 2009–2010 and 2011–2012) and

in association with the host population size (year 2010–2011;

figure 1a). The population size of the host butterfly in the

year 2010–2011 was the lowest recorded over the last

20 years, and appears to have had a lasting effect on the

population size of the wasp. The decrease in hyperparasitoid

population size is reflected in its increase in genetic differen-

tiation and decreasing effective population size between

years. While the wasp has persisted due to its dispersal

abilities, the observed decline suggests that it is at some risk

of extinction both stochastically, due to small population
size and as a result of the loss of genetic diversity. This high-

lights the vulnerability of high trophic-level species in

anthropogenically disturbed habitats [65].
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