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Community composition is determined by attributes of the environment, individual spe-
cies, and interactions among species. We studied the distributions of a seed weevil and its 
parasitoid and hyperparasitoid wasps in a fragmented landscape. The occurrence of the 
weevil was independent of the measured attributes of the landscape (patch connectivity 
and resource availability). However, between habitat-patch networks, weevil density 
decreased with increasing parasitism, suggesting top-down control, especially in the 
north. Parasitism was mostly due to a specialist and a generalist that appeared to compete 
strongly. This competitive interaction was strongest at high patch-connectivity, perhaps 
due to a trade-off of local competitive ability and dispersal. Finally, the abundance of the 
generalist hyperparasitoid was unrelated to landscape or host-species abundance. The 
snapshot presented by these data can best be explained by top-down effects, interactions 
among species, host ranges, and patch configuration in the landscape, but not by local 
host-plant abundance.

Introduction

Communities are made up of species living in 
a shared habitat. Which species are present, 
their abundances and the complexity of the food 
web can depend on attributes of the habitat and 
the surrounding landscape. Many species in a 
community also interact so their persistence and 
prevalences are interdependent. This is espe-
cially true for strongly interacting species such 
as those competing for a shared resource, or 
those in predator–prey relationships (Cornell & 
Lawton 1992). Finally, when species inhabiting a 

landscape are considered a metacommunity, then 
the spatial structure and heterogeneity of the 
landscape can contribute to the complexity of the 
metacommunity (Holt 2002, Amarasekare 2008). 
To understand the structure of a community, as 
well as its dynamics and resilience, we must 
determine the roles of both spatial factors and 
biotic interactions (Leibold et al. 2004). This is 
most tractable for species with narrow resource 
requirements and strong interactions with other 
species (van Nouhuys & Hanski 2005).

A community made up of host plants, their 
insect herbivores, parasitoids and hyperparasit-
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oids provides such a scenario. There are several 
studies of plant–herbivore–parasitoid commu-
nities that highlight specific attributes of the 
system in determining the species abundances, 
such as local plant density (Hambäck & Englund 
2005), host-plant quality (Price & Hunter 2015, 
Riolo et al. 2015), and higher trophic level 
interactions (Cronin 2007). Only a handful of 
studies were on a scale appropriate to address 
the role of spatial configuration of the habitat 
in determining community or metacommunity 
structure (e.g. Amarasekare 2000, Harrison et 
al. 2005, Laszlo & Tothmeresz 2013, Cronin 
& Reeve 2014, Riolo et al. 2015). Both land-
scape structure and local species interactions are 
clearly important in determining the composition 
and dynamics of some communities, such as the 
Glanville fritillary butterfly and its parasitoids 
and hyperparasitoids in the Åland Islands, Fin-
land (van Nouhuys & Hanski 2005). But the rel-
ative importance of these intrinsic and extrinsic 
factors must vary depending on attributes of the 
landscape such as structure and primary produc-
tivity; attributes of the species such as resource 
breadth, mobility, and size; as well as food web 
complexity, and the spatial scale of the study.

The monophagous weevil Mecinus pascuo-
rum (Coleoptera: Curculionidae) feeds on the 
developing seeds of Plantago lanceolata (Plan-
taginaceae). In the Åland Islands, the weevil is 
part of the community of herbivores inhabiting 
P. lanceolata in dry meadows, pastures and dis-
turbed areas, where it is host to a community of 
parasitoids (Vikberg & Nieminen 2012, Niemi-
nen & Vikberg 2015). The meadows are char-
acterized as the setting for the long-term study 
of the metapopulation biology of the Glanville 
fritillary butterfly Melitaea cinxia (Lepidoptera: 
Nymphalidae) (Nieminen et al. 2004, Hanski 
2011, Ojanen et al. 2013, Fountain et al. 2016) 
and its parasitoids (Lei et al. 1997, van Nouhuys 
& Hanski 2005, Nair et al. 2016).

We studied the association of environmental 
factors and species interactions, with the abun-
dance of the weevil M. pascuorum and its associ-
ated parasitoids, using a sample of 6170 individu-
als collected from 18 patch networks in the Åland 
Islands in 2009. These data are described in 
Nieminen and Vikberg (2015). The environmen-
tal factors were latitude, patch connectivity in the 

landscape and local host plant abundance. The 
species interactions were rates of parasitism and 
hyperparasitism. Out of the many possible out-
comes, we expected that the weevil abundance 
would be positively associated with the local P. 
lanceolata abundance due to resource concen-
tration in terms of apparency (Root 1973) and 
availability (Rand et al. 2014), and that weevil 
abundance would also increase with habitat patch 
connectivity because highly connected patches 
provide a large stable resource over time (Hanski 
1998). The same argument can be made for the 
parasitoids, in which case we would expect a 
high rate of parasitism where the plant and host 
weevil are abundant. On the other hand, parasit-
oids can cause host population size to decrease, 
which would diminish the association of weevil 
population size with plant abundance (Jones et al. 
1994, Walker et al. 2008), and could increase the 
association of patch connectivity with host and 
parasitoid population sizes (Hassell 2000). We 
would also expect competing parasitoids to be 
negatively associated (Hassell & Waage 1984), 
and to have contrasting distributions in the land-
scape if, for example, there is a trade-off between 
dispersal ability and local competitive ability 
(Calcagno et al. 2006). Going up one trophic 
level, we expected hyperparasitoids to influence 
the overall rate of parasitism and the competitive 
relationship between host parasitoids (Sullivan 
& Völkl 1999, van Nouhuys & Hanski 2000), 
the effects of which can depend on landscape 
connectivity (Holt & Hoopes 2005). Lastly, we 
expected the interactions among species to be 
weaker with wider resource breadth or host range 
(van Nouhuys 2005). These types of patterns 
are predicted theoretically, and are important to 
understanding biodiversity as well as biological 
control of insect pests (Holt 2002, Frago 2016, 
Kaser & Ode 2016). There are many empirical 
examples of subsets of them but they are seldom 
addressed simultaneously on a large scale in a 
natural system.

Material and methods

Study species

Mecinus pascuorum is a monophagous seed-
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feeder of P. lanceolata. Females lay one egg 
per developing seed capsule, each larva usually 
consumes two seed capsules, and pupation takes 
place within the seed capsule (Dickason 1968, 
Mohd Norowi et al. 1999). In the Åland Islands, 
adult emergence peaks around early August. 
They overwinter as adults, and are most active in 
late May and June (Nieminen & Vikberg 2015).

Mesopolobus incultus (Hymenoptera: Ptero-
malidae) is a solitary primary parasitoid of M. 
pascuorum (e.g. Norowi et al. 2000). It is appar-
ently a specialist on M. pascuorum in the Åland 
Islands, though there are records of other host 
weevils as well as Apion species feeding on 
Trifolium (see e.g. Baur et al. 2007). For further 
discussion see Nieminen and Vikberg (2015).

Eupelmus vesicularis (Hymenoptera: Eupel-
mi dae) is a highly generalist species that, accord-
ing the literature acts as both a primary and a 
secondary parasitoid (Gibson 1995, Noyes 2013). 
Females are brachypterous which limits their dis-
persal ability, but Gibson (1995) suggests that on 
a local scale the wasp is a superior competitor 
over other parasitoid species due to its wide host 
range that includes primary parasitoids as hosts. 
Eupelmus vesicularis has been presumed to attack 
both M. incultus and M. pascuorum, but see the 
section ‘Comparison of Mesopolobus incultus and 
Eupelmus vesicularis adults’ below.

Baryscapus endemus (Hymenoptera: Eulo-
phi dae) is a hyperparasitoid (Graham 1991) 
which attacks parasitoid wasps from the family 
Pteromalidae (Noyes 2013). In this community, 
it is highly likely to be a parasitoid of M. incul-
tus but not E. vesicularis (Nieminen & Vikberg 
2015).

Landscape, sampling and rearing

We studied factors determining metacommunity 
structure of the seed-feeding weevil M. pascuo-
rum and its associated parasitoids by systemati-
cally collecting naturally infested P. lanceolata 
seed spikes from habitat patches in a well char-
acterized landscape in the Åland Islands, Fin-
land. We kept the spikes under laboratory condi-
tions until weevils and parasitoids emerged and 
then analyzed the occurrence of the species with 
respect to each other, and to the configuration of 

the habitat in the landscape. The habitat patches 
are open meadows, pastures and disturbed areas 
where P. lanceolata grows. In total, we sampled 
643 habitat patches (size range 0.002–5.5 ha; 
see Table 1) between 29 July and 8 August 
2009. Plantago lanceolata patches are naturally 
clustered in the landscape. These clusters were 
delineated into semi-independent patch networks 
(SINs) using the software SPOMSIM (Moilanen 
2004). The number of patches, their areas and 
distribution differed among SINs; for thorough 
descriptions of the study sites see Nieminen et 
al. (2004) and Ojanen et al. (2013). We collected 
samples from each patch in 18 SINs spread over 
the Åland Islands (Fig. 1). The landscape struc-
ture was characterized based on the population 
biology of the butterfly M. cinxia. However, it is 
relevant for any species dependent on P. lance-
olata. For instance, the dynamics and evolution 
of the phytopathogen Podosphaera plantaginis 
that infects P. lanceolata are in part determined 
by the same spatial landscape structure (Laine & 
Hanski 2006).

We collected P. lanceolata spikes from all 
parts of each patch. The number of spikes sam-
pled from each patch was proportional to the 
abundance of P. lanceolata in it. Each spike 
was collected from a different plant. When the 
number of spikes in a patch was very low, we 
collected at most 10% of them. This proce-
dure resulted in a sample of 1–161 spikes per 
patch (30.7 on average). We aimed to collect 
spikes with ripe seeds only. Spikes were placed 
individually in plastic tubes in the laboratory, 
and emerged insect individuals were transferred 
into coded Eppendorf tubes after about a month 
for identification by experts. Mortality during 
rearing was not scored, but based on our earlier 
experience it was likely low and unbiased due to 
uniform laboratory conditions. Details of sam-
pling and rearing can be found in Nieminen and 
Vikberg (2015).

Comparison of Mesopolobus incultus 
and Eupelmus vesicularis adults

We compared the sizes of adult M. incultus and 
E. vesicularis wasps to infer whether the latter 
species might have been a primary parasitoid of 
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M. pascuorum, in which case most E. vesicularis 
individuals would be relatively large, or if it was 
both a primary parasitoid as well as a hyperpara-
sitoid of M. incultus. If that were the case then 
there would be two size classes of E. vesicularis, 
one of which being smaller than M. incultus. 
We randomly selected one storage box of reared 
point-mounted individuals, and measured the 
length of each under a stereomicroscope with an 
ocular scale (0.05 mm accuracy). All individuals 
missing some body part(s) or glued in a curved 
position were excluded. The size measure was 
the body length from the front of the head to 
the end of abdomen (excl. ovipositor). A total of 
346 female and 232 male E. vesicularis, and 66 
female and 59 male M. incultus were measured.

Many parasitoids, including facultative 
hyper parasitoids can use host species of two 
sizes by using large hosts for female offspring 
and small hosts for male offspring (Macedo et 
al. 2014). To test whether E. vesicularis might be 
doing this we compared the SIN level sex ratio 
of E. vesicularis associated with rate of parasit-
ism (E. vesicularis/all parasitized and unpara-
sitized weevils) or potential hyperparasitism (E. 
vesicularis/[M. incultus + E. vesicularis]).

Statistical analyses

We used unweighted least-squares linear regres-
sion (Statistix 10.0, Analytical Software, Tal-
lahassee, FL) to model associations of weevil 
abundance and parasitism rates of each wasp 
species with various variables. We modeled the 
mean abundance of weevils per spike (log-trans-
formed) as a function of average connectiv-
ity of SINs, latitude, abundance of host plants 
(log-transformed), total parasitism rate (number 
of parasitoid individuals/[number of parasitoid 
individuals + number of weevil individuals]) 
and their first-order interactions. The mean per-
spike weevil abundance was calculated for the 
occupied habitat patches within each SIN. The 
total number of spikes sampled from several 
patches was not recorded (missing values: SIN 
IDs 11, 27, 37, 40, 75 and 116 one patch; SINs 
36 and 47 two patches; SIN 57 six patches). For 
these missing values we used the median of the 
recorded values from the SIN the patch was in. 
The total weevil abundance in a SIN was defined 
as the sum of both weevils and parasitoids that 
emerged in the rearing. Abundance of host plants 
was the sum of P. lanceolata coverage per SIN 

Fig. 1. Map of the Åland 
Islands showing the 
sampled patch networks 
(SINs) shaded in pink 
(high weevil occurrence) 
and blue (low weevil 
occurrence). Each gray 
dot represents a Plan-
tago lanceolata patch. 
The number associated 
with each SIN is the ID 
number.
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in 2008. Host-plant coverage was not estimated 
for SINs 2, 75 and 106 in 2008. We estimated 
the host-plant coverage for these SINs by multi-
plying the mean coverage (5.745) of all patches 
in this study by the number of patches in the 
SIN. The spatial structure of the landscape can 
be quantified in several ways. We used average 
connectivity of patches within a SIN because 
it incorporates total area of habitat, patch size 
and distance between patches, which are all 
strongly correlated. The average connectivity 
was determined by first calculating the connec-
tivity (sensu Moilanen & Nieminen 2002) of 
each patch based on its proximity to all other 
P. lanceolata patches, and the sizes of those 
patches, with mean dispersal distance of 0.25 km 
(dispersal kernel α = 0.025), and then averaging 
the connectivities of the patches within each SIN 
(Table 1). We incorporated latitude to account 
for the apparent north–south gradient in weevil 
abundance (see Fig. 1).

We modeled rates of parasitism (the frac-
tion of hosts parasitized) by the parasitoids E. 
vesicularis and M. incultus as a function of 
average connectivity, latitude, total host weevil 
abundance (log-transformed), parasitism rate by 
the other primary parasitoid species and their 
first-order interactions. For M. incultus we also 
used the parasitism rate by the hyperparasit-
oid B. endemus. We modeled the parasitism 
rate (the fraction of hosts parasitized) of the 
hyperparasitoid B. endemus as a function of 
average connectivity, latitude, total host abun-
dance (logn + 1-transformed), total abundance of 
E. vesicularis (logn + 1-transformed) and their 
first-order interactions. In the analysis of M. 
incultus parasitism rate, there were several pos-
sible best statistical models because the vari-
ables latitude and weevil abundance were highly 
correlated. Therefore, as a post-hoc analysis, 
we used residuals of the linear regression of 
the parasitism rate of M. incultus as a function 
of latitude as the dependent variable in order to 
remove the strong effect of latitude. To compare 
the sizes of the parasitoids M. incultus and E. 
vesicularis we used an unpaired two-sample 
t-test. Finally, we tested the associations of SIN 
level sex ratio of E. vesicularis with the rate of 
parasitism and potential hyperparasitism with 
Spearman’s rank-order correlation.

Results

The weevil M. pascuorum was present in 17 of 
the 18 patch networks sampled. However, its 
distribution at the landscape scale was strongly 
bimodal. In eight mostly northern SINs weevils 
were found in less than 9% of the patches, and 
in 10 SINs more than 39% of the patches were 
occupied (Table 1 and Fig. 2A–B). The reason 
for this spatially correlated bimodality (Fig. 1) is 
not explained by the effects of sampling effort, 
the total habitat area, average connectivity of 
patch networks, latitude or the abundance of the 
host plant (Figs. 2 and 3C).

Within occupied habitat patches within SINs, 
the mean number of weevils per spike was 0.80 
(SD = 0.63), with at most 2.1 per spike. The 
density of weevils was unrelated to latitude, 
habitat patch connectivity in the patch network, 
and local density of P. lanceolata. However, 
there was a strong negative association between 
weevil density and the rate of parasitism (Fig. 3A 
and Table 2; t = –4.89, p = 0.002).

The primary parasitoid M. incultus was pres-
ent in all but one of the patch networks occupied 
by the weevil, parasitizing 45%–100% of the 
weevils sampled (mean rate = 0.65, SD = 0.16). 
The rate of parasitism by M. incultus was low 
where the rate of parasitism by E. vesicularis 
was high (Fig. 3B and Table 2; t = –3.14, p = 
0.009). Once the strong positive association with 
latitude was taken into account by using the 
residuals of the regression of M. incultus para-
sitism rate vs. latitude as the dependent variable, 
rate of parasitism was found to be related land-
scape connectivity and competition. Specifically, 
where patch connectivity was high (patches clus-
tered together) the rate of parasitism by M. 
incultus tended to be low (Table 2; t = –2.23, p = 
0.047).

The parasitoid E. vesicularis was present 
in all but two of the patch networks occupied 
by the weevil host, parasitizing 5% to 29% of 
the weevils sampled (mean rate = 0.18, SD = 
0.09). The rate of parasitism by E. vesicularis 
was unrelated to habitat patch connectivity, lat-
itude and host abundance (Fig. 3D). However, 
it decreased with the rate of parasitism by M. 
incultus (Fig. 3B and Table 2; t = –5.63, p = 
0.0001). In order to determine the probable tro-
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phic level of E. vesicularis, we compared its size 
with M. incultus. In both wasp species, females 
(E. vesicularis: mean length = 1.80 mm, SD = 
0.27; M. incultus: mean length = 1.76 mm, SD = 
0.25) were significantly longer than males (E. 
vesicularis: mean length = 1.32 mm, SD = 0.21; 
M. incultus: mean length = 1.21 mm, SD = 0.18) 
(t-test: E. vesicularis: t577 = 23.83, p < 0.0001; 
M. incultus: t124 = 13.83, p < 0.0001). There was 
no difference in length between the two species 
(t-test: females: t411 = 1.173, p = 0.5; males: 
t292 = 4.04, p = 0.5). The sex ratio of E. vesicu-
laris among SINs was marginally female-biased 
(average female:male ratio: 0.54, SD = 0.14). No 
correlations were found between the SIN level 
sex ratio of E. vesicularis and the rate of parasit-
ism (Spearman’s correlation: rS = –0.325, n = 13, 
p = 0.280) or the potential rate of hyperparasit-
ism (rS = –0.289, n = 13, p = 0.334).

The hyperparasitoid B. endemus was present 
in all but two of the habitat-patch networks occu-
pied by its wasp host M. incultus. It parasitized 
the wasp in two to 26% of the weevils sampled 
(mean rate = 0.09, SD = 0.07). The rate of hyper-
parasitism was unrelated to any of the factors 
measured.

Discussion

The weevil

The biotic factors that influence population 
dynamics of a species can be resource limitation 
(bottom-up) and predators, parasites and dis-
eases (top-down) interactions (Hunter & Price 
1992). Classically, to observe top-down control 
we should detect delayed density dependence 
over time in the relationship between a predator 
and prey (Hunter et al. 1997) or conduct a pred-
ator exclusion experiment (Harrison & Cappuc-
cino 1995, Kasparson 2016). At the scale of this 
study, there was no association of habitat con-
nectivity or resource availability with density of 
M. pascuorum. Habitat patch connectivity may 
not be important because the patches are rela-
tively stable, and large, and the weevil is very 
small (2–3 mm) so it may not be very mobile. 
Further, the vast majority of P. lanceolata seeds 
were left uneaten so we expected that the resi- Ta
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dent populations of beetles were not on average 
resource limited. One explanation of why the 
weevil may not be resource limited is that it is 
on average parasitized at a very high rate. The 
data presented here are a snapshot in time, but by 
comparing semi-independent habitat-patch net-
works that differ in weevil host-density we see a 
negative association of host density with the rate 
of parasitism. Additionally, extremely high par-
asitism in the northern SINs (Fig. 1) due to the 
combined effects of the parasitoids M. incultus 

and E. vesicularis (Table 1) apparently led to the 
association of weevil abundance with latitude 
(Fig. 3C), suggesting that on a large spatial scale 
the parasitoids may determine the distribution of 
the weevil. This local (SIN level) and regional 
(Åland Island level) associations with parasit-
ism, along with the stability of the plant popula-
tions suggest that parasitoids play a considerable 
role in the dynamics of the weevil, which may be 
controlled from the top down.
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Fig. 2. Associations between (A) the number of patches in a semi-independent patch network (SIN) and the 
number of patches occupied by the weevil Mecinus pascuorum, (B) average patch connectivity in a SIN and abun-
dance of Mecinus pascuorum, (C) average patch connectivity and the total habitat area of SINs, and (D) the total 
habitat area in a SIN and the total coverage of Plantago lanceolata. Each circle represents one SIN. Filled circles 
represent SINs with > 0.39 and circles SINs with < 0.09 occupancy rate.
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The parasitoids M. incultus and E. 
vesicularis

On average 80% of the weevils were parasitized 
which is a very high rate of parasitism (Hawkins 
1994). Mesopolobus incultus made up most of 
this, however, E. vesicularis was also abun-
dant, and there was a strong negative association 
between the two parasitoids (Fig. 3B). This pat-
tern could occur if there were direct competition 
between parasitoids, or if one parasitoid were 
a hyperparasitoid of the other. The natural his-
tory of the parasitoid E. vesicularis is not well 
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Fig. 3. Associations within each SIN (excluding SINs with no occurrence of the species) of (A) weevil density and 
the rate of parasitism, (B) rate of parasitism by Eupelmus vesicularis and Mesopolobus incultus, (C) latitude of the 
SIN midpoint and weevil abundance, and (D) weevil abundance and rate of parasitism by Eupelmus vesicularis.

known, but it is a generalist, and has been con-
sidered both a parasitoid of M. pascuorum and 
a hyperparasitoid of M. incultus (Bouček 1977, 
Noyes 2013). An immature hyperparasitoid is 
restricted to feeding on a single host individual 
and cannot have perfect conversion efficiency 
so it will be significantly smaller than its host 
(Sullivan & Völkl 1999, Hatton et al. 2015). 
In our sample, M. incultus and E. vesicularis 
individuals were of the same length, though 
E. vesicularis was slightly slenderer. Eupelmus 
vesicularis individuals that developed as hyper-
parasitoids of M. incultus should be noticeably 
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smaller than M. incultus and much smaller than 
those developing in M. pascuorum. However, 
we found only one size class of E. vesicularis. 
Finally, if E. vesicularis used both hosts but lay 
male eggs in M. incultus we would expect a male 
bias where the ratio of E. vesicularis to M. incul-
tus was high because male eggs would be laid 
in smaller hosts. We found instead that the sex 
ratio was equal in the different patch networks. 
Based on these three factors, the length of E. 
vesicularis, the single size class and the consis-
tent sex ratio, we think it is most plausible that 
E. vesicularis acts merely as a primary parasitoid 
in this system. It follows from that, that the neg-
ative association of the two parasitoids is due to 
competition for hosts (Teder et al. 2012).

Competing parasitoids can coexist if they 
have different resource needs or strategies for 
host use. In a landscape context this might occur, 
for example, if a superior local competitor is an 
inferior disperser, allowing the other parasitoid 
to persist as a fugitive (Amarasekare 2003, Bon-
sall et al. 2004, van Nouhuys & Punju 2010); 
in our case, the specialist parasitoid M. incultus 
parasitizes at the highest rates at low patch-con-
nectivity and high host-abundance (Table 2). Had 
E. vesicularis shown the opposite trend we might 
have concluded that E. vesicularis is the superior 
local competitor and inferior disperser. Indeed, 
it probably persists well locally because it does 
not depend on a single host species. It is also a 
poor disperser because females are brachypter-
ous (Nieminen & Vikberg 2015). Furthermore, 
the negative association of the two parasitoids is 
strongest at high connectivity (Table 2), which 
suggests that dispersal limitation may constrain 
E. vesicularis to well-connected patches of suit-
able habitat. While the idea of co-existence due 
to a trade-off between local competitive ability 
and dispersal ability is a compelling scenario, 
and has rarely if ever been shown to occur in 
insect communities (Amarasekare 2003, 2007, 
van Nouhuys & Punju 2010), it is worthy of fur-
ther study in this system.

Though hyperparasitoids are generally much 
smaller than their parasitoid hosts (Sullivan & 
Völkl 1999, Hatton et al. 2015), a hyperparasit-
oid will be nearly the size of its host if it devel-
ops extremely efficiently. Harvey et al. (2006) 
found such an exceptional case. They showed 

that when using pupae of the parasitoid Cote-
sia glomerata, the hyperparasitoid Gelis agilis 
develops to 90% its host mass, and Lysibia nana 
reaches 95% host mass. If this were the case 
in the weevil parasitoid community then the 
negative association between the two wasps can 
be partly due to strong variation of the rate of 
hyperparasitism (from 7 to 40% of M. incultus), 
which is strongest at high connectivity due to 
low mobility of E. vesicularis.

The hyperparasitoid Baryscapus 
endemus

The hyperparasitoid B. endemus is relatively 
common, parasitizing up to 26% of M. incultus. 
However, we found no association of the hyper-
parasitoid with factors that we measured. This 
suggests that the population size of B. endemus 
is independent of that of the host M. incultus, 
presumably because it has other hosts in the 
landscape, including several other parasitoids 
of the family Pteromalidae, even within the P. 
lanceolata weevil metacommunity (Nieminen 
& Vikberg 2015). Though we found no direct 
association between B. endemus and its host M. 
incultus, the hyperparasitoid can still influence 
the competitive relationship between the two 
primary parasitoids of the weevil by decreasing 
the population size of M. incultus.

Dynamics of the community

At the base of this community is an abundant 
host plant, P. lanceolata, associated with a few 
generalist and a few specialized herbivores, one 
of which is the specialist seed predator weevil M. 
pascuorum (Nieminen & Vikberg 2015). As in 
most insect communities (Hawkins 1994) there 
are many species of parasitoids associated with 
the weevil, however all but three are relatively 
rare (Nieminen & Vikberg 2015). The special-
ist parasitoid M. incultus parasitizes the largest 
fraction of hosts and is hyperparasitized by B. 
endemus. The generalist parasitoid E. vesicularis 
which could be both a primary or hyperparasit-
oid probably acts mostly as a primary parasitoid 
in this community.
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Plantago lanceolata provides a stable 
resource for the weevil in the Åland Islands 
where it is common throughout much of the 
islands, independent to landscape structure (hab-
itat connectivity and geographic position) and 
local P. lanceolata (host plant) density. While 
weevil density (number of weevils per seed 
spike) was independent of the environmental 
parameters, it was strongly negatively related to 
the rate of parasitism suggesting top-down con-
trol of the weevil by parasitoids. Without more 
data or experimentation, we cannot be sure that 
there is a strong trophic cascade in this system. 
However, if the suggestive pattern is robust, the 
next question is: why is it top-down rather than 
bottom-up? Strong top-down effects on com-
munities are more commonly found in aquatic 
systems (e. g. Boaden & Kingsford 2015) than 
in terrestrial insect communities (Harrison 
& Cappuccino 1995), but this difference has 
been strongly debated (reviewed in Shurin et 
al. 2006). Differences in primary productivity 
(Strong 1992, Shurin et al. 2006), characteristics 
of the herbivores, higher trophic-level species 
and methods of study (Polis 1999, Borer et al. 
2005) have all been used to explain the strength 
of trophic cascades.
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